A Protocol Compiler for
Secure Sessions in ML

Ricardo Corin, Pierre-Malo Deniélou
INRIA—Microsoft Research Joint Centre
http://www.msr-inria.inria.fr/projects/sec/sessions/

http://www.msr-inria.inria.fr/projects/sec/sessions/

__

Programming distributed applications

 How to program networked independent sites?

- Little control over the runtime environment
=» Can we trust the network?

- Sites have their own code & security concerns
= Can we trust them?

« Communication abstractions simplify this task
- Basic communication patterns, e.g. RPCs

uer Response
® ™ e .

- They hide implementation details

y

(message format, routing, security,...)

__

Sessions

« Specification of a message flow between roles

- Graph with roles as nodes and labelled messages as edges
- Example: session with 3 parties, a loop and branches.

: Retract .
i ﬁaper:string .

Upload : string ok Withdraw

a

BadFormat : string Submit : string

Cfp : string

\\

- Active area for distributed programming
« A.k.a. protocols, or contracts, or workflows
» Pi calculus settings, web services, operating systems

- Gommon strategy: type systems enforce protocol compliance
“If every site program is well-typed, sessions follow their spec”

A\

Compiling session
to cryptographic protocols

« We extend ML with session declarations that express
message flows

 Then we compile session declarations to protocols that
shield our programs from any coalitions of remote peers

« We obtain that:

1. Well-typed programs always play their roles
—> functional result (uses ordinary ML-typechecking)

2. If a program uses sessions implemented with our
compiler, then remote sites can be assumed to play their
roles, without trusting their code

—> security theorem

__Z

Architecture

- _ N
Acompllel‘ S U NS S S NSNS EEEEENEEEENEEEEEEEEEE
from sessions | 2 Networking & Concrete | =
to ML = Cryptography Crypto | a
\ lllll?llIIIIIIIIIIIIIIIIII Illlll.
\r Session formally
Session P Cryptoprotocol verified code
_ declarations (in ML)
Application
code
Application
code ML compiler

with sessions .NET/OpenSSL) =

An extension of ML [concrete code
(.

__

Outline

|. Programming with Sessions
1. Language description
2. Session usage and interface generation
~ |l.Compiler internals

1. Security protocol
2. Module generation

__Z

A small session language

T ii= Payload types
unit | int | string base types
pi= Role processes
W(fii7is Pi)ick send
?fiiTi; Pi)i<k receive
©Hx.p recursion declaration
X recursion
0 end
i = Sessions
(ri:Ti = pi)icn initial role processes

A very simple RPC session:

Session RPC =

() Query () Response (> role client:int = |Query:string ; 7Response:int

role server:unit = 7Query:string ; |Response:int

A\

A Conference Management Session

Retract
®rc L
Cfp : string Upload : strin Ok
‘—>< : ——»Cc >
@ confman

BadFormat : string

Revise : string

1. Call for paper
2_ Upload Sequence '<Fina|Version : string @Accept - string

3. Revision loop

4. Decision & Rebuttal Loop

Global and Local sessions

Session CMS =
role pc:string =
| Cfp:string;

mu start.
?(Paper:string
+ Retract)

role author =
?Cfp:string;
mu start.
|Upload:string;
?(BadFormat:string;start
+ OK;!(Submit:string
+ Withdraw))

role confman =
mu start.
?Upload:string;
|(BadFormat:string;start
+ Ok;?(Submit:string;!Paper:string
+ Withdraw;!Retract))

Source file cms . session

Withdra

Cfp : string Ok

Upload : string
Cc

BadFormat : string

Withdraw

Upload : strin% (C) Ok
-

BadFormat : string

>

Retract »‘

Submit: string>

Paper : string

Retract
>

Submit : strin

Paper : string

__Z

Generated Interface

Session CMS =
role pc:string = (...)

role author =(...)

role confman =
mu start.
?Upload:string;
|(BadFormat:string;start
+ Ok;?(Submit:string;!Paper:string
+ Withdraw;!Retract)) >

Source file cms . session

Each role is compiled to a role function
“confman” that expects continuations
to drive the session (CPS style).

The continuations are constrained by
the generated types.

Retract
>

Withdraw

Upload : string Ok Submit: string>
> C) >
-

BadFormat : string

Paper : string

type msgi11 ={
hUpload : (principals -> string -> msg12)}
and msg12 =
| BadFormat of string * msg11
| Ok of unit * msg13
and msg13 = {
hSubmit : (principals -> string -> msg14);
hWithdraw : (principals -> unit -> msg15)}
and msg14 = Paper of string * unit
and msg15 = Retract of string * unit

type confman = principal -> msg11 -> unit

Generated file cMS.m11i

Role Programming

* Principal registration

- Give crypto and network information (public/private keys, IP, ...)

« CPS programming

type msgi1 ={
hUpload : (principals -> string -> msg12)}
and msg12 =
| BadFormat of string * msg11
| Ok of unit * msg13
and msg13 = {
hSubmit : (principals -> string -> msg14);
hWithdraw : (principals -> unit -> msg15)}
and msqg14 = Paper of string * unit
and msg15 = Retract of string * unit

type confman = principal -> msg11 -> unit

Generated file cMS . m1 i

open CMS

let handler_submission =
{ hSubmit = fun _s -> Paper(s, ()) ;
hWithdraw = fun _ () -> Retract((), ()) }

let rec handler_paper prins draft =
if String.length draft > 12
then BadFormat("Make it shorter!",
{hUpload = handler_paper})
else Ok((), handler_submission)

let result =
confman "bob" {hUpload = handler_paper}

User code foo.ml

Ordinary ML type-checking provides functional guarantees!

__Z

Implementability conditions

« We want session integrity.
« Some sessions are always vulnerable:

Withdraw @

A\

» We detect them and rule them out
- They can also be turned into safe sessions with extra messages:

Paper : string »‘

Submit : string

Withdraw

O

_

Protocol outline & (Potential) attacks

Only 2,3. 4. Bad author
once! Replays uploads without
(net attack) Cfp
Cfp : string

Upload : string
»@
[1.Session
confusion

BadFormat : string
Use unique session id = hash(session decl + nonce N + principals)
Use cache for initial session messages
Use logical clock for loop session messages

Sign labels and session ids
=» What evidence do we forward?

In subsequent loops,
confman needs to
check only upload

o=

A\

_Z

Efficient Forwarding
Two visible sequencei
> Cfp - Upload
> Upload

Cfp : string Upload : string
1) ~(a, ~©

BadFormat : string

Visibility =
minimum information needed to update state of local role

« Can be computed statically from the session graph
« Any less information would break integrity

* More work to the compiler = less runtime tests

* This actually simplifies formal proofs!

__

Session Integrity, Formalized

« For any run of any choice of honest principals running roles of
compiled session declarations plus any coalition of dishonest
principals + network attacker

=> there exist valid paths in the session declarations
that are consistent with all the messages sent and
received by the honest principals

 Formalized as two semantics (previous work):
- one “ideal” with hardwired sessions,
- one “real” using our compiler and symbolic libraries

« We show a may-testing simulation from the real to the ideal

_

Compilation outline

« Generation of the global graph
- Well-formed and Implementability conditions
- Visible sequence generation

=+ For each role, generation of the local side of the crypto

protocol
Generated Module
Original Wired Network
User Froxy Data e
Code Sl Handlers Crypto
Libs

_

Wired Data handling

* Receive functions (receiveWirednode) : Message analysis

- Receive the message on the network, decompose, check session id
- Match label against possible incoming messages
- Check signatures (using visibility) and logical time-stamps

- Update local store and logical clock

A\

- Check against the cache

« Send functions (sendWired/abel): Message generation
- Session id, msg headers (session id+sender id+receiver id)
- Marshall payload

- Build signature, update the local store and logical clock

- Send the full message on the network

__

Proxy code

Links the user code with sendWired/receiveWired functions

type msgi1 ={
hUpload : (principals -> string -> msg12)}
and msg12 =
| BadFormat of string * msg11
| Ok of unit * msg13
and msg13 = {
hSubmit : (principals -> string -> msg14);
hWithdraw : (principals -> unit -> msg15)}
and msg14 = Paper of string * unit
and msg15 = Retract of string * unit

type confman = principal -> msg11 -> unit

Generated file cMS.m11i

(...) (* header sending *)
and confman_msg12 (st:state) : msg12 -> unit =
function
| Ok(x,next) ->
let newSt = sendWiredOk host 1 (WiredOk(st, x)) in
confman_msg13 newSt next
| BadFormat(x,next) ->
let newSt =
sendWiredBadFormat host 1 (WiredBadFormat(st, x)) in
confman_msg11 newSt next
(* header receiving *)
and confman_msg11 (st:state) : msg11 -> unit =
function handlers ->
let r = receiveWired11 1 host st () in
match r with
| WiredUpload (newSt, x) ->
let next = handlers.hUpload newSt.prins x in
confman_msg12 newSt next

(..))

Generated file cMS.m1

Benchmark

Retract
(e) -p

Cfp : string

string

A\

500 iterations in each loop
(4000 messages in total) Shepherd : string

No crypto crypto openssl @
1st loop 0.23s 2.95s
2" loop 0.46s 6.11s
3 loop 0.24s 2.98s

total 0.94s 12.04s 8.38s

__

Conclusion & Future Work

Cryptographic protocols can sometimes be derived
(and verified) from application security requirements
- Strong, simple security model
- Safer, more efficient than ad hoc design & code

Improvements to session expressiveness
- Enable access control over payloads

* Roles can deliver data to other roles securely
- Enable dynamic principal selection

* As opposed to the initiator picking everyone
Improve performance (symmetric cryptography?)

Thanks to
Karthikeyan Bhargavan, Cédric Fournet, James J. Leifer,
Jean-Jacques Lévy

A\

Try our session compiler!

http://www.msr-inria.inria.fr/projects/sec/sessions/

_

Existing approaches

* Session types:

- First ‘session types’: Pi-calculus based
[Honda&Vasconcelos 98, Gay & Hole 99]

* Describe message flows on single channels
- ‘Behavioral types’ [Kobayashi & Igarashi 01]

« Multi channel flows (types are CCS processes)
- ‘Contracts’ in Singularity OS [Fahndrich et al. 06]
- ‘Workflows’ in Web services

« WSDL, WS-SecureConversation [Bhargavan et al. 05]
» Global interactions [Carbone et al. 07]

* Protocol Analysis, Synthesis, and Transformation :

- Lots of work, but on abstract, isolated protocols

- Next challenge: integrate with expressive, real-life
(distributed) languages

« Secure Channels Implementation [Abadi, Fournet, Gonthier
02]

A\

A\

__

Discussion

e Session types are an active area of study
- we address their secure implementation

* Protocol verification:

We verity a reference implementation—not a simplified model
Our results hold for any number of (concurrent) sessions

Even for a single session, this is beyond
automated verification tools (loops and branching)

Crypto is Dolev-Yao, not far from computational model
Integrity, not liveness (so no progress or global termination)

* Related work on secure implementations of process
calculi, on automated protocol transformations

__

Differences with CSF'07 paper

« Typed interface

« Compiler released

* Internals of the compiler
* More serious case study

Upload:string

Withdraw

BadFormat:string

‘2nalVersion:string

Revise:string

Submit:string

Paper:strin

Accept:string

Reject:string

Rebuttal:string

__Z

Sessions and Security

« Secure implementation problem:
1. “If every site program is well-typed, sessions follow their spec”
=> only if we can trust the network

2. However “Sites wish to interact, but they have their own code &
security concerns”

=>» they do not necessarily trust one another

| 1. Modifications, Replays | 2. Malicious a doesn't involve p |
Cfp : string Upload : string
P ~a, ~c

BadFormat : string
XE%. Replays]
 We need a specialized secure implementation

- Prevents replay attacks (using caches, counters, nonces)
- Provides authentication using cryptographic signatures

A\

__Z

A Conference Management Session

Retract:unit
confman » pcC

Withdraw:unit
@ Cfp:string h Upload:string ; OK:unit ™ Submit:string
‘——ﬂ author) =@—>@hor confman
— ~ A-/
BadFormat:string Revise:string Paper:string
% T ReqgRevise:string

Close:unit

FinalVersion:string Accept:string Done:unit
@< (author)+ @ confman

Rebuttal:string

Reject:string

Shepherd:string

__Z

Retract:uni.

Withdraw:upit

Cfp:string Upload:string
G Q BadFormat:string Revise:stripg Paper:stripg

. ;inalVersion: stri' . o

Reject:stripg

A\

Request Contract
© (0)

‘ Request ‘ Contract

Negotiate

Abort ‘@
Accept ‘@ Confirm ‘@

Abort .

Accept C Confirm .

A\

__Z

Expressing sessions

« Terminology:

- Roles : behaviour of the session participants
- Principals : instantiate roles at runtime
- Messages : consists of labels and payloads

« [wo ways to represent sessions:

- As a graph = useful to globally reason on sessions
- As a collection of local roles

—> useful for the language semantics and implementation
- Representations are interconvertible

__

Security Goal:
Global session integrity

« For any run of any choice of honest principals running roles of
compiled session declarations plus any coalition of dishonest
principals + network attacker

=> there exist valid paths in the session declarations
that are consistent with all the messages sent and
received by the honest principals

- This generalizes correspondence assertions

\\

* Our compiler generates code that enforces this.

Example

Accept Confirm

C Request 0 Contract‘ Jhange

»

session S3 =
role store:string =
?Contract:string; mu start.
I(Offer:string;
?(Change:string; start
+ Accept; !Confirm)
+ Reject)

L

role officer = (...)
role customer = (...)

Demo

Accept Confirm
Offer C > >

S O
C Request 0 Contract S %hange

Reject C_»Abort O

A\

11

__Z

F+S programming language

T ::= Type expressions
t type variable
int, string, unit base types
T chan channel types
T, — Th arrow type
v o= Values (also used as Patterns)
x variable
0,1,...,Alice,Bob,...,() constants for base types
l,e,n, ... names for functions, channels, nonces
flo, ... vg) constructed term (when f has arity k)
e = Expressions
v value
lvr... vk function application
match v with (|v; — €;)ick value matching
let £ = e1 in e value definition
let (I; xo ...z, = @)Kk ine mutually-recursive function definition
type (t: = (| fj;, of T'j,)j,<k;)i<k IN€ mutually-recursive datatype definition
session S =X ine session type definition
{ S.rt v (v) session entry
s.p(e) session role (run-time only)
E[] == Evaluation contexts
[] top level
let x = E[-] in e sequential evaluation
s.p(E[]) in-session evaluation (run-time only)
P = Processes
e running thread
P|P parallel composition

0 inert process

4

F+S semantics

« Role semantics - :

~ fi ~ i
(SEND) N fi:7i 5 Di)icke —r i (RECEIVE) ?(fi:7i 5 pi)i<k f—>r Di

e F+S semantics is a “centralized session monitor”
- layered semantics using =, 2.and 2>

p Lo p

P, S.P 1)5 P; S'p/

(STEP)

g / /
,S- —>S 78.
(SENDS) poP e d

p,s.p (9(V),w) == p',s.p" (w)

- constitutes our global specification for sessions
- does not exist in F, our implementation language

A\

Using a compiled session:
the sto

1. Receive Contract,
2. Send either Offer or Reject
3. Receive Accept send Confirm

« User code needs to
provide message handlers
(CPS style)

Confirm

O

Accept

offer ~,G
C Request O Contract‘ S Jhange

|

S

type msgll =
hContract : (principals — string — msg12)}
and msgl?2 =
Offer of (string * msgl13)
| Reject of (unit * string) val store : principal — msgl1 — string
and msg13 = {
hChange : (principals — string — msgl2) ;
hAccept : (principals — unit — msg14)} Ordinary ML type-checking
and msgl4 = provides functional guarantees!
Confirm of (unit * string)

C—E=20 ~

»

e A store that
offers
deliveries in
Redmond
(default),
Cambridge,
or Orsay:

val store : principal — msgl1 — string

Coding the store

Accept Confirm
C >

Change
S

Reject C—’Abort O

let offer loc = List.assoc loc
["Default", "Redmond, 8am-9am";
"Redmond", "Redmond, 3pm-4pm";
"Orsay", "Orsay, lunchtime";
"Cambridge", "Cambridge, 6pm-7pm"]

let server prins req =
printf "Server: session starting for %s.\n\n"req;
let rec new _offer prins (loc:string) =
try
let o = offer loc in
Offer(o, {
hChange = new_offer;
hAccept = (fun _ () — Confirm((),"in ""0)); })
with _ — Reject((),"no offer available")in
new_offer prins "Default"

let status = S3.store "bob" { hContract = server; } in
printf "Store: Done! %s.\n\n" status)

Demo...

AN

A\

RPC example

Global description:

Query:string Response:int
NG

Equivalent to a local description:

session Rpc =
role C:int = !Query:string; 7?Response:int
role S:unit = ?Query:string; !Response:int

Our compiler generates functions “C” and “S” in module “Rpc”
Programmers drive their roles using CPS-style continuations:

“C” expects a Query string + a continuation for
handling the response

“S” expects a handler for the Query that generates the

e . e fen . e e

__

Session Integrity Goal

« For any run of any choice of honest principals
running roles of compiled session declarations plus
any coalition of dishonest principals + network
attacker = there exist valid paths in the session
declarations that are consistent with all the
messages sent and received by the honest
principals

» This generalizes correspondence assertions

__Z

Global and Local sessions

Retract
Session CMS = @ etrac >‘

role pc:string =
ICfp:string; Withdra

mu start. Cfp : string Upload : strin Ok
?(Paper:string; ‘—>@—>@—>
(ReqRevise:string; BadFormat : string
?(Change:string;start
+ Accept; !|Confirm)
+Close;?Done;
mu decision.
l(Shepherd:string;
?Rebuttal:string;decision

+ Accept:string; ‘<FinaIVersion : string Q <Accept - string
?FinalVersion:string a

+ Reject:string))
+ Retract) Reject : string epherd : string

role author = (...) @

role confman = (...)

Paper : string

Revise : string

ReqRevise : string

anagement

session
@ Retract:unit #@

Withdraw:unit
@ Cfp:string h Upload:string ; OK:unit ™ Submit:string
‘——ﬂ author) =@—>@hor confman
/ \ y f/
BadFormat:string Revise:string Paper:string
% T ReqgRevise:string

Close:unit

FinalVersion:string Accept:string Done:unit
@< (author)+ /p—c\‘ confman

Rebuttal:string

Reject:string

Shepherd:string

__

Efficient Forwarding

Two visible sequences:
2. Cfp - Upload
3. Upload

Cfp:string Upload:string OK:unit
‘——@ >(confman)———

BadFormat:string

Visibility = minimum information needed to update state of local role

« (Can be computed statically from the session graph
* Any less information would break integrity
* More work to the compiler = less runtime tests
« This actually simplifies formal proofs!

__

Existing approaches

« Session types:

- First ‘session types’: Pi-calculus based
[Honda&Vasconcelos 98, Gay & Hole 99]

» Describe message flows on single channels
- ‘Behavioral types’ [Kobayashi & Igarashi 01]

« Multi channel flows (types are CCS processes)
- ‘Contracts’ in Singularity OS [Fahndrich et al. 06]
- ‘Workflows’ in Web services

« WSDL, WS-SecureConversation [Bhargavan et al. 05]
» Global interactions [Carbone et al. 07]

« Protocol Analysis, Synthesis, and Transformation :

- Lots of work, but on abstract, isolated protocols

- Next challenge: integrate with expressive, real-life
(distributed) languages

« Secure Channels Implementation [Abadi, Fournet, Gonthier

__

Extensions

* Improve session expressiveness

- Enable access control over payloads
» Roles can deliver data to other roles securely

- Enable dynamic principal selection
» As opposed to the initiator picking everyone

__

Payload secrecy

m Session payloads have “variable” names

{wl,...,wn} Label {rl,...,r}
© ()

m Example for secrecy: RPC variant

{x} Query {x} /\{y} Forward {x,y} {r} Response {r}

= Here, malicious S1 shouldn’t read “r”, and a
malicious C shouldn’t read “y” (assuming
everyone else honest)

y

A\

__Z

Benchmark

Cfp:string Upload:string
@ authon confman

500 iterations in each loop
(4000 messages in total)

No crypto
1stloop 0.23s 2.95s
2" loop 0.46s 6.11s
3d]loop 0.24s 2.98s
total 0.94s 12.04s

BadFormat:string

FinalVersion:strj
@< autho

Reject:stripg

openssl

8.38s

Withdraw:ugit

OK:unit

Revise:stripg

Retract:unit .

Dynamic principal selection

= Example:

FindServer {S2}Pick {S2} {x}Query{x} Answer

A\

" Here, S1 gets to pick S2

Pitfalls / Challenges

B Commitments

{x}Commit N Response PN Open{x}

= Delegated Commitments

{x}Commit m Forward m Open{x}
© o D {8

A\

Confi
= Forks () (Rems) o Yool ~{0)—m(0)
c (s

No 5 Cancel =@

Implementability conditions

« Some sessions are always vulnerable:

Offer C
C Requesl g

A\

Reject O

 We detect them and rule them out

- They can be turned into safe sessions
but only with extra messages

Security Protocol

 We combine standard mechanisms
- X509 digital signatures
- Logical timestamps for loop control

- Anti-replay cache
 Per principal, based on session identifier Hash(S, a, N) + role

4

« Which evidence to sign & forward?

Forwarding history

« Complete history
- Every sender countersigns the whole history so far

- Every receiver checks signatures and
simulates the history vs. session spec

- Large overhead (unbounded crypto processing)

% We can do much better

__

Visibility

 Visibility = minimum information needed to update local role
- Any less information would break integrity

« (Can be computed statically from the session graph
- More work to the compiler = less runtime tests
- This actually simplifies formal proofs!

A\

Visible:
Visible: Accept-Confirm
1. Request-Contract A t o
2. Change ccept onfirm
Offer C > S >0
Request ~ Contract Jhange

C 50 . S

Rejec Abort

0

y

__

Our session compiler

* Generates interface (types for all messages)

« Generates specific sending and receiving code
for each visible sequence
- Checks exactly what is expected
- Zero dynamic graph computation

« 5000 lines in F# + dual F# libraries

A\

Dual libraries (CSFW’06)

« Crypto library:

type bytes val genskey: name — keybytes

type keybytes val genvkey: keybytes — keybytes

val nonce: name — bytes val sign: bytes — keybytes — bytes

val hash: bytes — bytes val verify: bytes — bytes — keybytes — bool

 Principals library:

val skey : principal — keybytes val safe : principal — bool

val vkey : principal — keybytes val psend® : (principal * bytes) chan
val psend : principal — bytes — unit val chans® : (principal * bytes chan) list
val precv : principal — bytes val skeys® : (principal * bytes) list

« Dual implementations
- Symbolic: using algebraic datatypes and type abstraction
- Concrete: using actual system (.NET) operations

\\

__

Integrity theorems

 Configuration =
Libraries + Session Declarations + User Code + Opponent Code

Theorem 1 (Security, reduction-based). If L M3 U O’ may fail in F for some O’
where w does not occur, then L S U O may fail in F+S for some O where w does not

OCCur.

: Offer C
* counter-example if

we allowed session forks: C Request S

Rejec 0O

Theorem 2 (Security, labelled-transition based). Let 11 be a valid implementation of
H. For all transitions W=« W in F, where © represents the observable trace of those
transitions, there exists W° valid implementation of H°, such that W5 W° —¥
W"and W' —4p5 W"” and H X« H° with ¢ the translation of .

A\

__

Discussion

e Session types are an active area of study
- we address their secure implementation

 Protocol verification:

We verify a reference implementation—not a simplified model
Our results hold for any number of (concurrent) sessions

Even for a single session, this is beyond
automated verification tools (loops and branching)

Crypto is Dolev-Yao, not far from computational model
Integrity, not liveness (so no progress or global termination)

» Related work on secure implementations of process
calculi, on automated protocol transformations

__Z

Conclusion

« Cryptographic protocols can sometimes be derived
(and verified) from application security
requirements

% - Strong, simple security model
- Safer, more efficient than ad hoc design & code

e Try it out now!

http://www.msr-inria.inria.fr/projects/sec/sessions/

http://www.msr-inria.inria.fr/projects/sec/sessions/

__

Extra Slides

4

__

Example:
Client-store-officer

A client C requests the delivery of an item on a given
date

An officer O records the transaction

A store S and a client C negotiate more details (e.g.
delivery time and place), and inform the officer O

Accept. . Confirm

Offyc i S - O
Request ~ Contract Change
c =50 . S

Reject C—’Abort O

(Only labels displayed)

_Z

Programming Distributed
applications

« How to program networked independent sites?
- Little control over the runtime environment
- Each site has its own code & security concerns
- Sites may interact, but they do not trust one another

A\

« Communication abstractions can help
- Hide implementation details (message format, routing,...)

©

- Basic communication patterns, @ A 4
e.g. RPCs or private channels

- Sessions,
(aka protocols, @ (S
or confracts,
or workflows) O

©

__

Using a compiled session: the

customer
e User code needs to
provide message handlers Request(v,w)
w= handler for
(CPS Style) __ Offer & Reject

A\

Request Contract
c =50 - S

Reject C

type msg0 =
Request of (string * msgl)
and msgl = {
hOffer : (principals — string — msg?2) ;
hReject : (principals — unit — msg4)}
and ...

__

| abelled session semantics

(SESSION) p,session S = Xin e —. pW {S = X}, e up to renamings of S

bo ir p S= (7”2'2’72' = pz’)z’<n € p sfresh

(INIT)

P, S8 (@i)icn s pW{s (ai)icn {ro} : S}, 8.0’ We use a\
po N / 5 g centralized
gomny 2P - (rif' o pidien €p 0 ZpUle @)ien 0 5) session
P58 a; s pW{s (ai)icn (§W{r;}): S}, s.p’ monitor Y.
p-rp
(STEP) ; p
Py SP —s Py 8P
oS, poLs f sp safeo These rules\
~ sqg v are our
p,o (g(0),w) ==, o', s.p (w) .
sessions
(RECVS) p,0 Lep.sp sad:Sep safeo spec! -

p,o (W)~ p,s.p (w.g @ D)

(ENDS) p,s.0 (v) —e p,v

__

Example:
Client-store-officer

A client C requests the delivery of an item on a given
date

An officer O records the transaction

A store S and a client C negotiate more details (e.g.
delivery time and place), and inform the officer O

Accept. . Confirm

Offyc i S - O
Request ~ Contract Change
c =50 . S

Reject C—’Abort O

(Only labels displayed)

A\

Results

Theorem 1 (Security, reduction-based). If L. Mg U O’ may fail in F for some O’

where w does not occur, then L .S U O may fail in F+S for some O where w does not
occur.

» Counter example if we allow forks:

let pr={ client="Alice"; server = "Eve"; officer = "Bob"; } in
Offer C let x = new() in
let acceptbranch _ _ = send x "OK" in
C RequeSE S let rejectbranch pr’ _=if pr = pr’ then let _ =recv x in send w () in
let office () = S.officer "Bob" {hReject=rejectbranch} in
Re ject O fork office;

S.client pr (Request (42,{hAccept=acceptbranch}))

Theorem 2 (Security, labelled-transition based). Let IV be a valid implementation of
H. For all transitions W=« W’ in F, where @ represents the observable trace of those
transitions, there exists TW° valid implementation of H°, such that W=k W° —
W'"and W' —§y W"” and H é@K H° with ¢ the translation of 1.

